20 research outputs found

    Histopathological evaluation of the effect of Sulfamide+Trimethoprim administration on renal tissue in broiler chickens

    No full text
    Administration of sulfonamides adversely affects renal tissue in human beings and animals. The aim of the present study was to evaluate the histopathological changes in renal tissue of broiler chickens following administration of Sulfamide+Trimethoprim. In this study, 240 healthy 3 weeks old broiler chickens were randomly assigned to two equal groups. In the treatment groups, sulfonamide +Trimethoprim were administered at a dose of 20ml in 800lit of drinking water for 3 days while no drag was administered in the control group. After 72 hours, tissue samples were collected from the kidneys of the broiler chickens and 5µm thick sections were prepared from specimens fixed in 10% buffered formalin and stained with hematoxylin and eosin and the TUNEL technique. Histopathological examination of the renal tissue in the treatment group indicated the presence of necrosis and apoptosis in renal tubular epithelial cells, congestion, hemorrhage and glomerolopathy. The difference between the treatment and control groups in the severity of renal pathological changes was significant (

    Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism

    No full text
    It is commonly assumed that food can affect mood. One prevalent notion is that food containing tryptophan increases serotonin levels in the brain and alters neural processing in mood-regulating neurocircuits. However, tryptophan competes with other long-neutral-amino-acids (LNAA) for transport across the blood-brain-barrier, a limitation that can be mitigated by increasing the tryptophan/LNAA ratio. We therefore tested in a double-blind, placebo-controlled crossover study (N=32) whether a drink with a favourable tryptophan/LNAA ratio improves mood and modulates specific brain processes as assessed by functional magnetic resonance imaging (fMRI). We show that one serving of this drink increases the tryptophan/LNAA ratio in blood plasma, lifts mood in healthy young women and alters task-specific and resting-state processing in brain regions implicated in mood regulation. Specifically, Test-drink consumption reduced neural responses of the dorsal caudate nucleus during reward anticipation, increased neural responses in the dorsal cingulate cortex during fear processing, and increased ventromedial prefrontal-lateral prefrontal connectivity under resting-state conditions. Our results suggest that increasing tryptophan/LNAA ratios can lift mood by affecting mood-regulating neurocircuits

    Specific Nutritional Biomarker Profiles in Mild Cognitive Impairment and Subjective Cognitive Decline Are Associated With Clinical Progression:The NUDAD Project

    No full text
    Objectives: Nutritional insufficiencies have been associated with cognitive impairment. Understanding whether nutritional biomarker levels are associated with clinical progression could help to design dietary intervention trials. This longitudinal study examined a panel of nutritional biomarkers in relation to clinical progression in patients with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). Design, setting and participants: We included 299 patients without dementia (n = 149 SCD; age 61 ± 10 years, female 44%, n = 150 MCI; age 66 ± 8 years, female 38%). Median (interquartile range) follow-up was 3 (2-5) years. Methods: We measured 28 nutritional biomarkers in blood and 5 in cerebrospinal fluid (CSF), associated with 3 Alzheimer's disease pathologic processes: vascular change (lipids), synaptic dysfunction (homocysteine-related metabolites), and oxidative stress (minerals and vitamins). Nutritional biomarker associations with clinical progression to MCI/dementia and cognitive decline based on the Mini-Mental State Examination score were evaluated using Cox proportional hazard models and linear mixed models. We used partial least squares Cox models (PLS-Cox) to examine nutritional biomarker profiles associated with clinical progression. Results: In the total group, high high-density lipoprotein (HDL) levels were associated with clinical progression and cognitive decline. In SCD, high folate and low bilirubin levels were associated with cognitive decline. In MCI, low CSF S-adenosylmethionine (SAM) and high theobromine were associated with clinical progression to dementia and high HDL, cholesterol, iron, and 1,25(OH)2 vitamin D were associated with cognitive decline. PLS-Cox showed 1 profile for SCD, characterized by high betaine and folate and low zinc associated with clinical progression. In MCI, a profile with high theobromine and HDL and low triglycerides and a second profile with high plasma SAM and low cholesterol were associated with risk of dementia. Conclusion and Implications: High HDL was most consistently associated with clinical progression. Moreover, different nutritional biomarker profiles for SCD and MCI showed promising associations with clinical progression. Future dietary (intervention) studies could use nutritional biomarker profiles to select patients, taking into account the disease stage

    The impact of genetic background on neurodegeneration and behavior in seizured mice

    Full text link
    We used pilocarpine-induced seizures in mice to determine the impact of genetic background on the vulnerability of hippocampal neurons and associated changes of behavioral performance. The susceptibility of hippocampal neurons to seizure-induced cell death paralleled the severity of the seizures and depended on genetic background. Hippocampal neurons in C57BL/6 mice were most resistant to cell death, whereas they were highly vulnerable in FVB/N mice. The degree of neuronal degeneration in F1 hybrid mice obtained by crossing the two strains was at an intermediate level between the parent strains. Two weeks after the severe seizures, performance in a water-maze place navigation task showed a bimodal distribution. Seventeen of 19 (90%) F1 mice were completely unable to learn while the other two learned reasonably well. Of 28 C57BL/6 mice with similarly severe seizures, six were as strongly impaired as their F1 counterparts (22%). The remaining 22 performed normally, indicating a much lower probability of C57BL/6 mice to be affected. Treated mice showed a deficit of open-field exploration which was strongly correlated with the impairment in the place navigation task and was again more severe in F1 mice. Our results show that the vulnerability of hippocampal neurons to pilocarpine-induced seizures, as well as the associated behavioral changes, depended on genetic background. Furthermore, they confirm and extend our earlier finding that a relatively modest reduction of hippocampal cell death can be associated with dramatic changes of behavioral performance and emphasize the importance of tightly-controlled genetic backgrounds in biological studies
    corecore